
Dealing with Loops

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1 / 11

Contents

1 A simple looping program

2 Let’s break down the loop

3 Simulating bounded loop using if’s

4 Loops are unbounded

5 Loop may run forever

6 Weakest precondition for while loop

7 Let’s apply this to the example

8 Partial vs. Total correctness

9 Variations to try

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2 / 11

A simple looping program

Computing sum of first n integers.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/

int sigma(int n) {
int s = 0;
int i = 1;
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Frama-c fails to prove.

But we don’t know why?

Could it be because of loop?

Let’s first confirm. Test!

prompt> frama-c -wp sigma-loop.c
[kernel] Parsing sigma-loop.c (with preprocessing)
[wp] warning: Missing RTE guards
sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns ’everything’ instead)
[wp] 1 goal scheduled
[wp] [Alt-Ergo] Goal typed sigma post : Unknown (Qed:4ms) (906ms)
[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

A simple looping program

Computing sum of first n integers.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Frama-c fails to prove.

But we don’t know why?

Could it be because of loop?

Let’s first confirm. Test!

prompt> frama-c -wp sigma-loop.c
[kernel] Parsing sigma-loop.c (with preprocessing)
[wp] warning: Missing RTE guards
sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns ’everything’ instead)
[wp] 1 goal scheduled
[wp] [Alt-Ergo] Goal typed sigma post : Unknown (Qed:4ms) (906ms)
[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

A simple looping program

Computing sum of first n integers.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Frama-c fails to prove.

But we don’t know why?

Could it be because of loop?

Let’s first confirm. Test!

prompt> frama-c -wp sigma-loop.c
[kernel] Parsing sigma-loop.c (with preprocessing)
[wp] warning: Missing RTE guards
sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns ’everything’ instead)
[wp] 1 goal scheduled
[wp] [Alt-Ergo] Goal typed sigma post : Unknown (Qed:4ms) (906ms)
[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

A simple looping program

Computing sum of first n integers.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Frama-c fails to prove.

But we don’t know why?

Could it be because of loop?

Let’s first confirm. Test!

prompt> frama-c -wp sigma-loop.c
[kernel] Parsing sigma-loop.c (with preprocessing)
[wp] warning: Missing RTE guards
sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns ’everything’ instead)
[wp] 1 goal scheduled
[wp] [Alt-Ergo] Goal typed sigma post : Unknown (Qed:4ms) (906ms)
[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

Let’s break down the loop

Computing the sum of first 3 integers. i.e. fixed n.

File: sigma-fixedn.c

/*@ requires n == 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0, i = 1;
s = s + i; i = i + 1;
s = s + i; i = i + 1;
s = s + i;
return s;

}

prompt> frama-c -wp sigma-fixedn.c
[kernel] Parsing sigma-fixedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 1

Loop is re-written for fixed n.

In this case n = 3.

The underlying logic is same.

Frama-c is able to prove the
correctness now.

Note the postcondition
remains the same.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

Let’s break down the loop

Computing the sum of first 3 integers. i.e. fixed n.

File: sigma-fixedn.c

/*@ requires n == 3;
ensures \result == n*(n+1)/2;

*/

int sigma(int n) {
int s = 0, i = 1;
s = s + i; i = i + 1;
s = s + i; i = i + 1;
s = s + i;
return s;

}

prompt> frama-c -wp sigma-fixedn.c
[kernel] Parsing sigma-fixedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 1

Loop is re-written for fixed n.

In this case n = 3.

The underlying logic is same.

Frama-c is able to prove the
correctness now.

Note the postcondition
remains the same.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

Let’s break down the loop

Computing the sum of first 3 integers. i.e. fixed n.

File: sigma-fixedn.c

/*@ requires n == 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0, i = 1;
s = s + i; i = i + 1;
s = s + i; i = i + 1;
s = s + i;
return s;

}

prompt> frama-c -wp sigma-fixedn.c
[kernel] Parsing sigma-fixedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 1

Loop is re-written for fixed n.

In this case n = 3.

The underlying logic is same.

Frama-c is able to prove the
correctness now.

Note the postcondition
remains the same.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

Let’s break down the loop

Computing the sum of first 3 integers. i.e. fixed n.

File: sigma-fixedn.c

/*@ requires n == 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0, i = 1;
s = s + i; i = i + 1;
s = s + i; i = i + 1;
s = s + i;
return s;

}

prompt> frama-c -wp sigma-fixedn.c
[kernel] Parsing sigma-fixedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 1

Loop is re-written for fixed n.

In this case n = 3.

The underlying logic is same.

Frama-c is able to prove the
correctness now.

Note the postcondition
remains the same.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

Simulating bounded loop using if’s

Computing the sum of upto 3 integers. i.e. bounded n.

File: sigma-boundedn.c

/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int i = 1, s = 0;
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; }
return s;

}

prompt> frama-c -wp sigma-boundedn.c
[kernel] Parsing sigma-boundedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 0 (20ms)
Alt-Ergo: 1 (21ms) (16)

Loop is re-written for a
bounded n.

In this case n <= 3.

The underlying logic is same.

Frama-c is able to prove the
correctness again.

Deduction seems to breakdown in
the presence of loops.

Two problems are evident.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

Simulating bounded loop using if’s

Computing the sum of upto 3 integers. i.e. bounded n.

File: sigma-boundedn.c

/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int i = 1, s = 0;
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; }
return s;

}

prompt> frama-c -wp sigma-boundedn.c
[kernel] Parsing sigma-boundedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 0 (20ms)
Alt-Ergo: 1 (21ms) (16)

Loop is re-written for a
bounded n.

In this case n <= 3.

The underlying logic is same.

Frama-c is able to prove the
correctness again.

Deduction seems to breakdown in
the presence of loops.

Two problems are evident.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

Simulating bounded loop using if’s

Computing the sum of upto 3 integers. i.e. bounded n.

File: sigma-boundedn.c

/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int i = 1, s = 0;
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; }
return s;

}

prompt> frama-c -wp sigma-boundedn.c
[kernel] Parsing sigma-boundedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 0 (20ms)
Alt-Ergo: 1 (21ms) (16)

Loop is re-written for a
bounded n.

In this case n <= 3.

The underlying logic is same.

Frama-c is able to prove the
correctness again.

Deduction seems to breakdown in
the presence of loops.

Two problems are evident.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

Simulating bounded loop using if’s

Computing the sum of upto 3 integers. i.e. bounded n.

File: sigma-boundedn.c

/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int i = 1, s = 0;
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; }
return s;

}

prompt> frama-c -wp sigma-boundedn.c
[kernel] Parsing sigma-boundedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 0 (20ms)
Alt-Ergo: 1 (21ms) (16)

Loop is re-written for a
bounded n.

In this case n <= 3.

The underlying logic is same.

Frama-c is able to prove the
correctness again.

Deduction seems to breakdown in
the presence of loops.

Two problems are evident.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

Simulating bounded loop using if’s

Computing the sum of upto 3 integers. i.e. bounded n.

File: sigma-boundedn.c

/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int i = 1, s = 0;
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; i = i + 1; }
if (i <= n) { s = s + i; }
return s;

}

prompt> frama-c -wp sigma-boundedn.c
[kernel] Parsing sigma-boundedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1

Qed: 0 (20ms)
Alt-Ergo: 1 (21ms) (16)

Loop is re-written for a
bounded n.

In this case n <= 3.

The underlying logic is same.

Frama-c is able to prove the
correctness again.

Deduction seems to breakdown in
the presence of loops.

Two problems are evident.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑

x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑

x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑

x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑

x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

1. Loops are unbounded

How can one be sure the contract will be satsified for any n?

Weakest precondition calculus
works backward, statement-by-
statement.

while (x < n) {
x = x + 1;

}

During execution, the loop may
be iterated zero or more times.

The question is how many times
must the backward deduction be
pushed through the loop?

P’: x<2 Q’: x<5

x < 1

x = x + 1;

x < 2

x = x + 1;

x < 3

x = x + 1;

x < 4

x = x + 1;

x < 5

Q = Q’

Does P’ ⇒ Q’?

x<2 ⇒ x< 1? X

↑
x<2 ⇒ x< 2? X

↑
x<2 ⇒ x< 3? X

↑
x<2 ⇒ x< 4? X

↑
x<2 ⇒ x< 5? X

WP start

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

2. Loop may run forever

What is the guarantee that the loop will eventually terminate?

while (i < n) {
.
.
i = i + 1

}

i never gets
incremented.

while (i ! = n) {
.
i = i + 1
n = n + 1

}

n increases along
with i.

i = 1
while (i ! = 10) {

.
i = i + 2

}

i will never take a
value of 10.

Bottomline:

The programmers can write their code in any manner.

They can state the input and output conditions in any way.

The proof system must not make any assumptions about the code.

Proof construction must be based on generic principles.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

2. Loop may run forever

What is the guarantee that the loop will eventually terminate?

while (i < n) {
.
.
i = i + 1

}

i never gets
incremented.

while (i ! = n) {
.
i = i + 1
n = n + 1

}

n increases along
with i.

i = 1
while (i ! = 10) {

.
i = i + 2

}

i will never take a
value of 10.

Bottomline:

The programmers can write their code in any manner.

They can state the input and output conditions in any way.

The proof system must not make any assumptions about the code.

Proof construction must be based on generic principles.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

2. Loop may run forever

What is the guarantee that the loop will eventually terminate?

while (i < n) {
.
.
i = i + 1

}

i never gets
incremented.

while (i ! = n) {
.
i = i + 1
n = n + 1

}

n increases along
with i.

i = 1
while (i ! = 10) {

.
i = i + 2

}

i will never take a
value of 10.

Bottomline:

The programmers can write their code in any manner.

They can state the input and output conditions in any way.

The proof system must not make any assumptions about the code.

Proof construction must be based on generic principles.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

2. Loop may run forever

What is the guarantee that the loop will eventually terminate?

while (i < n) {
.
.
i = i + 1

}

i never gets
incremented.

while (i ! = n) {
.
i = i + 1
n = n + 1

}

n increases along
with i.

i = 1
while (i ! = 10) {

.
i = i + 2

}

i will never take a
value of 10.

Bottomline:

The programmers can write their code in any manner.

They can state the input and output conditions in any way.

The proof system must not make any assumptions about the code.

Proof construction must be based on generic principles.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

2. Loop may run forever

What is the guarantee that the loop will eventually terminate?

while (i < n) {
.
.
i = i + 1

}

i never gets
incremented.

while (i ! = n) {
.
i = i + 1
n = n + 1

}

n increases along
with i.

i = 1
while (i ! = 10) {

.
i = i + 2

}

i will never take a
value of 10.

Bottomline:

The programmers can write their code in any manner.

They can state the input and output conditions in any way.

The proof system must not make any assumptions about the code.

Proof construction must be based on generic principles.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S

2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Weakest precondition for while loop

Weakest precondition asks the user to provide a magic property that
will serve as both pre- and post-condition for the loop. It will check if
this property is satisfied each time the while condition is evaluated.

This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

The loop body S is executed only if B is true.

1 B ⇒ S is equivalent to B ∧ I ⇒ S
2 ¬B ⇒ Q is equivalent to ¬B ∧ I ⇒ Q

while B do
S

Q

I

wp(while B do S,Q)

= wp(while B ∧ I do S,Q)

= B ∧ I ⇒ wp(S,I) ∧ ¬B ∧ I ⇒ Q

How do we come up with
this loop invariant?

Any thumb rules?

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;

loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;

loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;

loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;

loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Let’s apply this to the example

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

1. Capturing progress

Evaluation of while i s
entry condition
Before iteration 1 1 0
Before iteration 2 2 1
Before iteration 3 3 3
Before iteration 4 4 6
.
.
Before iteration n n (n-1)*n/2
After iteration n n+1 n*(n+1)/2

Progress made is captured by (i−1)*i/2.

2. Capturing the entry & exit range

Entry condition: i ranges from 1 to n

Exit condition: i takes the value n+1

Combining, we get 1 <= i <= n+1.

Loop invariant must capture the
progress made as iterations proceed.

Loop invariant must capture the span
of entry and exit condition range.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Partial vs. Total correctness

The loop invariant will help prove partial corrrectness of programs.

Partial correctness: The correctness
criteria will be met if the loop would
terminate.

Total correctness: The program is
guaranteed to terminate and the
correctness criteria will be met.

Proving termination

To prove termination, one has to specify a
non-negative expression that will decrease
as the while loop executes and eventually
becomes 0.

In our example, since i increases, the
expression n − i decreases. In ACSL,
this is specified using the annotation
loop variant n − i.

At most one loop variant clause is allowed.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;
loop variant n − i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11

Partial vs. Total correctness

The loop invariant will help prove partial corrrectness of programs.

Partial correctness: The correctness
criteria will be met if the loop would
terminate.

Total correctness: The program is
guaranteed to terminate and the
correctness criteria will be met.

Proving termination

To prove termination, one has to specify a
non-negative expression that will decrease
as the while loop executes and eventually
becomes 0.

In our example, since i increases, the
expression n − i decreases. In ACSL,
this is specified using the annotation
loop variant n − i.

At most one loop variant clause is allowed.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;
loop variant n − i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11

Partial vs. Total correctness

The loop invariant will help prove partial corrrectness of programs.

Partial correctness: The correctness
criteria will be met if the loop would
terminate.

Total correctness: The program is
guaranteed to terminate and the
correctness criteria will be met.

Proving termination

To prove termination, one has to specify a
non-negative expression that will decrease
as the while loop executes and eventually
becomes 0.

In our example, since i increases, the
expression n − i decreases. In ACSL,
this is specified using the annotation
loop variant n − i.

At most one loop variant clause is allowed.

File: sigma-loop.c

/*@ requires n > 0;
ensures \result == n*(n+1)/2;

*/
int sigma(int n) {

int s = 0;
int i = 1;
/*@

loop invariant s == (i−1)*i/2;
loop invariant 1 <= i <= n+1;
loop assigns s, i;
loop variant n − i;

*/
while (i <= n) {

s = s + i;
i = i + 1;

}
return s;

}

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11

Variations to try

Apply these variations to sigma program to improve your understanding.

1 Remove loop invariant s == (i−1)*i/2;

2 Remove loop invariant 1 <= i <= n+1;

3 Replace (i−1)*i/2 with i*(i+1)/2 in first loop invariant.

4 Replace loop invariant 1 <= i <= n+1; with loop invariant i <= n+1;

5 Replace loop invariant 1 <= i <= n+1; with loop invariant 1 <= i <= n;

6 Do as in bullet 4. In addition, replace while (i <= n) with while (i < n).

7 Remove the statement i = i + 1;

8 Replace loop invariant 1 <= i <= n+1; with loop invariant 1 <= i <= n+2;. Now,
modify your program such that criteria is met but program is wrong.

9 Re-write the while loop to iterate in reverse way. i.e. n + (n−1) + . . . + 1. What
changes would you have to make to prove all goals?

Follow these instructions when you try the variations.

Implement one variation at a time and reason out the frama-c output.

Run frama-c-gui -wp 〈program〉 to see which goal cannot be proved.

Don’t make silly errors and waste time resolving them. Focus on checking logic.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 11 / 11

	A simple looping program
	Let's break down the loop
	Simulating bounded loop using if's
	Loops are unbounded
	Loop may run forever
	Weakest precondition for while loop
	Let's apply this to the example
	Partial vs. Total correctness
	Variations to try

