# Dealing with Loops

### 19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering



Jul - Dec 2020

19CSE205 : PROGRAM REASONING

## Contents



- A simple looping program
- 2 Let's break down the loop
- Simulating bounded loop using if's
- 4 Loops are unbounded
- 5 Loop may run forever
- 6 Weakest precondition for while loop
- Let's apply this to the example
- 8 Partial vs. Total correctness
- O Variations to try



Computing sum of first n integers.

| File: sigma-loop.c    |
|-----------------------|
|                       |
|                       |
|                       |
| int sigma(int n) {    |
| int $s = 0$ ;         |
| int $i = 1;$          |
| while (i $\leq n$ ) { |
| s = s + i;            |
| i = i + 1;            |
| }                     |
| return s;             |
| }                     |
|                       |



Computing sum of first n integers.

#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int s = 0;
    int i = 1;
    while (i <= n) {
        s = s + i;
        i = i + 1;
        }
        return s;
}
```



Computing sum of first n integers.

#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int s = 0;
    int i = 1;
    while (i <= n) {
        s = s + i;
        i = i + 1;
        }
        return s;
}
```

#### prompt> frama-c -wp sigma-loop.c

[kernel] Parsing sigma-loop.c (with preprocessing)

[wp] warning: Missing RTE guards

sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns 'everything' instead)

[wp] 1 goal scheduled

[wp] [Alt-Ergo] Goal typed\_sigma\_post : Unknown (Qed:4ms) (906ms)

[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)



Computing sum of first n integers.

#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int s = 0;
    int i = 1;
    while (i <= n) {
        s = s + i;
        i = i + 1;
        }
        return s;
}
```

- Frama-c fails to prove.
- But we don't know why?
- Could it be because of loop?
- Let's first confirm. Test!

#### prompt> frama-c -wp sigma-loop.c

[kernel] Parsing sigma-loop.c (with preprocessing)

[wp] warning: Missing RTE guards

```
sigma-loop.c:7:[wp] warning: Missing assigns clause (assigns 'everything' instead)
```

[wp] 1 goal scheduled

[wp] [Alt-Ergo] Goal typed\_sigma\_post : Unknown (Qed:4ms) (906ms)

[wp] Proved goals: 0 / 1

Alt-Ergo: 0 (unknown: 1)



## Computing the sum of first 3 integers. i.e. fixed n.

| File: sigma-fixedn.c |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



## Computing the sum of first 3 integers. i.e. fixed n.





## Computing the sum of first 3 integers. i.e. fixed n.

#### File: sigma-fixedn.c

```
/*@ requires n == 3;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int s = 0, i = 1;
    s = s + i; i = i + 1;
    s = s + i; i = i + 1;
    s = s + i;
    return s;
}
```

- Loop is re-written for fixed n.
- In this case n = 3.
- The underlying logic is same.
- Frama-c is able to prove the correctness now.
- Note the postcondition remains the same.



## Computing the sum of first 3 integers. i.e. fixed n.

#### File: sigma-fixedn.c

```
/*@ requires n == 3;
ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int s = 0, i = 1;
    s = s + i; i = i + 1;
    s = s + i; i = i + 1;
    s = s + i;
    return s;
}
```

```
prompt> frama-c -wp sigma-fixedn.c
[kernel] Parsing sigma-fixedn.c (with preprocessing)
[wp] warning: Missing RTE guards
[wp] 1 goal scheduled
[wp] Proved goals: 1 / 1
Qed: 1
```

- Loop is re-written for fixed n.
- In this case n = 3.
- The underlying logic is same.
- Frama-c is able to prove the correctness now.

• • = • • =

• Note the postcondition remains the same.



Computing the sum of upto 3 integers. i.e. bounded n.

| File: sigma-boundedn.c |   |
|------------------------|---|
|                        |   |
|                        |   |
|                        |   |
|                        |   |
|                        |   |
|                        |   |
|                        | J |



Computing the sum of upto 3 integers. i.e. bounded n.

#### File: sigma-boundedn.c

```
/*@ requires 1 <= n <= 3;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int i = 1, s = 0;
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; }
    return s;
}
```



Computing the sum of upto 3 integers. i.e. bounded n.

#### File: sigma-boundedn.c

```
/*@ requires 1 <= n <= 3;
ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int i = 1, s = 0;
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; }
    return s;
}
```

- Loop is re-written for a bounded n.
- In this case n <= 3.
- The underlying logic is same.
- Frama-c is able to prove the correctness again.



## Computing the sum of upto 3 integers. i.e. bounded n.

#### File: sigma-boundedn.c

```
/*@ requires 1 <= n <= 3;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int i = 1, s = 0;
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; }
    return s;
}
```

# prompt> frama-c -wp sigma-boundedn.c [kernel] Parsing sigma-boundedn.c (with preprocessing) [wp] warning: Missing RTE guards [wp] 1 goal scheduled [wp] Proved goals: 1 / 1 Qed: 0 (20ms) Alt-Ergo: 1 (21ms) (16)

- Loop is re-written for a bounded n.
- In this case  $n \le 3$ .
- The underlying logic is same.
- Frama-c is able to prove the correctness again.



## Computing the sum of upto 3 integers. i.e. bounded n.

#### File: sigma-boundedn.c

```
/*@ requires 1 <= n <= 3;
    ensures \result == n*(n+1)/2;
*/
int sigma(int n) {
    int i = 1, s = 0;
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; i = i + 1; }
    if (i <= n) { s = s + i; }
    return s;
}
```

#### prompt> frama-c -wp sigma-boundedn.c [kernel] Parsing sigma-boundedn.c (with preprocessing) [wp] warning: Missing RTE guards [wp] 1 goal scheduled [wp] Proved goals: 1 / 1 Qed: 0 (20ms) Alt-Ergo: 1 (21ms) (16)

- Loop is re-written for a bounded n.
- In this case  $n \le 3$ .
- The underlying logic is same.
- Frama-c is able to prove the correctness again.

Deduction seems to breakdown in the presence of loops. Two problems are evident.





 Weakest precondition calculus works backward, statement-bystatement.

while ( x < n ) { x = x + 1;}



 Weakest precondition calculus works backward, statement-bystatement.

while ( 
$$x < n$$
 ) {  
  $x = x + 1;$   
}

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?



• Weakest precondition calculus works backward, statement-by-statement.

while ( 
$$x < n$$
 ) {  $x = x + 1;$  }

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

 $P': x{<}2 \ Q': x{<}5 \qquad \text{Does} \ P' \Rightarrow Q'?$ 



• Weakest precondition calculus works backward, statement-by-statement.

while ( x < n ) { 
$$x = x + 1;$$
 }

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

 $P': x{<}2 \ Q': x{<}5 \qquad \text{Does} \ P' \Rightarrow Q'?$ 

$$Q = Q'$$
 WP start



Does  $P' \Rightarrow Q'$ ?

How can one be sure the contract will be satsified for any n?

P': x<2 Q': x<5

 Weakest precondition calculus works backward, statement-bystatement.

while ( 
$$x < n$$
 ) {  
  $x = x + 1;$   
}

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

x < 5 $x < 2 \Rightarrow x < 5?$ Q = Q'WP start

19CSE205 : PROGRAM REASONING



 Weakest precondition calculus works backward, statement-bystatement.

$$\mathsf{P'}: x{<}2 \; \mathsf{Q'}: x{<}5 \qquad \mathsf{Does} \; \mathsf{P'} \Rightarrow \mathsf{Q'}?$$

while ( 
$$x < n$$
 ) {  
  $x = x + 1;$   
}

• During execution, the loop may be iterated zero or more times.

• The question is how many times must the backward deduction be pushed through the loop? x < 4 $x < 2 \Rightarrow x < 4? \checkmark$ x = x + 1; $\uparrow$ x < 5 $x < 2 \Rightarrow x < 5? \checkmark$ Q = Q'WP start



 Weakest precondition calculus works backward, statement-bystatement.

while ( 
$$x < n$$
 ) {  $x = x + 1;$  }

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

 $P'{:}\;x{<}2\;Q'{:}\;x{<}5\qquad Does\;P'\Rightarrow Q'?$ 

$$x < 3$$
 $x < 2 \Rightarrow x < 3? \checkmark$  $x = x + 1;$  $\uparrow$  $x < 4$  $x < 2 \Rightarrow x < 4? \checkmark$  $x = x + 1;$  $\uparrow$  $x < 5$  $x < 2 \Rightarrow x < 5? \checkmark$  $0 = 0'$ WP start

**AMRITA** 

How can one be sure the contract will be satsified for any n?

 Weakest precondition calculus works backward, statement-bystatement.

while ( 
$$x < n$$
 ) {  $x = x + 1;$  }

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

 $\mathsf{P'}{:}\; x{<}2\;\mathsf{Q'}{:}\; x{<}5 \qquad \text{Does }\mathsf{P'} \Rightarrow \mathsf{Q'}?$ 

$$x < 2$$
 $x < 2 \Rightarrow x < 2? \checkmark$  $x = x + 1;$  $\uparrow$  $x < 3$  $x < 2 \Rightarrow x < 3? \checkmark$  $x = x + 1;$  $\uparrow$  $x < 4$  $x < 2 \Rightarrow x < 4? \checkmark$  $x = x + 1;$  $\uparrow$  $x < 5$  $x < 2 \Rightarrow x < 5? \checkmark$  $Q = Q'$ WP start



 Weakest precondition calculus works backward, statement-bystatement.

while ( 
$$x < n$$
 ) {  
  $x = x + 1;$   
 }

- During execution, the loop may be iterated zero or more times.
- The question is how many times must the backward deduction be pushed through the loop?

| P': x<2 Q': x<5 | Does $P' \Rightarrow Q'$ ?           |
|-----------------|--------------------------------------|
| x < 1           | x<2 $\Rightarrow$ x< 1? X            |
| x=x+1;          | $\uparrow$                           |
| x < 2           | $x{<}2 \Rightarrow x{<}2?$ 🗸         |
| x = x + 1;      | $\uparrow$                           |
| x < 3           | x<2 $\Rightarrow$ x< 3? $\checkmark$ |
| x = x + 1;      | $\uparrow$                           |
| x < 4           | x<2 $\Rightarrow$ x< 4? $\checkmark$ |
| x = x + 1;      | $\uparrow$                           |
| x < 5           | x<2 $\Rightarrow$ x< 5? $\checkmark$ |
| Q = Q'          | WP start                             |



## What is the guarantee that the loop will eventually terminate?



What is the guarantee that the loop will eventually terminate?

| while ( i < n ) { |  |
|-------------------|--|
|                   |  |
| $\frac{1}{i=i+1}$ |  |
| }                 |  |

• i never gets incremented.



What is the guarantee that the loop will eventually terminate?



• i never gets incremented.

 n increases along with i.

**EAMRITA** VISHWA VIDYAPEETHAM

What is the guarantee that the loop will eventually terminate?



 i never gets incremented.  n increases along with i. • i will never take a value of 10.

**EAMRITA** VISHWA VIDYAPEETHAM

What is the guarantee that the loop will eventually terminate?



Bottomline:

- The programmers can write their code in any manner.
- They can state the input and output conditions in any way.
- The proof system must not make any assumptions about the code.
- Proof construction must be based on generic principles.









• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.





- This magic property is called loop invariant.
  - i.e. I = wp(S,I) where I is the loop invariant.
- The loop body S is executed only if B is true.



**EAMRITA** VISHWA VIDYAPEETHAM

Weakest precondition asks the user to provide a magic property that will serve as both pre- and post-condition for the loop. It will check if this property is satisfied each time the while condition is evaluated.

• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

**0**  $B \Rightarrow S$  is equivalent to  $B \land I \Rightarrow S$ 



• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

 $\begin{array}{ll} \bullet & \mathsf{B} \Rightarrow \mathsf{S} \text{ is equivalent to } & \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{S} \\ \bullet & \neg \mathsf{B} \Rightarrow \mathsf{Q} \text{ is equivalent to } \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q} \end{array}$ 

while B do S I

• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

wp(while B do S,Q)





• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

 $\begin{array}{ll} \bullet & \mathsf{B} \Rightarrow \mathsf{S} \text{ is equivalent to } & \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{S} \\ \bullet & \neg \mathsf{B} \Rightarrow \mathsf{Q} \text{ is equivalent to } \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q} \end{array}$ 

• wp(while B do S,Q)

= wp(while B  $\wedge$  I do S,Q)





• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

 $\begin{array}{ll} \bullet & \mathsf{B} \Rightarrow \mathsf{S} \text{ is equivalent to } & \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{S} \\ \bullet & \neg \mathsf{B} \Rightarrow \mathsf{Q} \text{ is equivalent to } \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q} \end{array}$ 

• wp(while B do S,Q)

= wp(while B  $\wedge$  I do S,Q)

 $= \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{wp}(\mathsf{S},\mathsf{I}) \land \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q}$ 





• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

wp(while B do S,Q)

= wp(while B  $\land$  I do S,Q)

$$= \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{wp}(\mathsf{S},\mathsf{I}) \land \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q}$$



How do we come up with this loop invariant? Any thumb rules?



• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

wp(while B do S,Q)

= wp(while B  $\land$  I do S,Q)

$$= \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{wp}(\mathsf{S},\mathsf{I}) \land \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q}$$

Loop invariant must capture the progress made as iterations proceed.



How do we come up with this loop invariant? Any thumb rules?

• This magic property is called loop invariant.

i.e. I = wp(S,I) where I is the loop invariant.

• The loop body S is executed only if B is true.

• wp(while B do S,Q)

= wp(while B  $\land$  I do S,Q)

 $= \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{wp}(\mathsf{S},\mathsf{I}) \land \neg \mathsf{B} \land \mathsf{I} \Rightarrow \mathsf{Q}$ 

Loop invariant must capture the progress made as iterations proceed.

Q

while B do

How do we come up with this loop invariant?

Any thumb rules?

Loop invariant must capture the span of entry and exit condition range.



## Let's apply this to the example



#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \ = n^{(n+1)/2};
*/
int sigma(int n) {
    int s = 0;
    int i = 1;
    /*@
    */
    while (i \le n) {
        s = s + i;
        i = i + 1;
    return s;
```

Loop invariant must capture the progress made as iterations proceed.

Loop invariant must capture the span of entry and exit condition range.

イロト イボト イヨト イヨト

Swaminathan J

19CSE205 : PROGRAM REASONING

## Let's apply this to the example



#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \ = n^{(n+1)/2};
*/
int sigma(int n) {
    int s = 0;
    int i = 1;
    /*@
    */
    while (i \le n) {
        s = s + i;
        i = i + 1;
    return s;
```

# Loop invariant must capture the progress made as iterations proceed.

Loop invariant must capture the span of entry and exit condition range.

イロト イボト イヨト イヨト

#### 1. Capturing progress

| Evaluation of while | i   | s         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Swaminathan J

19CSE205 : PROGRAM REASONING



```
/*@ requires n > 0;
    ensures \ ensures = n^{*}(n+1)/2;
*/
int sigma(int n) {
    int s = 0:
    int i = 1;
     /*@
     */
    while (i \le n) {
        s = s + i;
         i = i + 1;
     return s;
```

Loop invariant must capture the progress made as iterations proceed.

1. Capturing progress

| Evaluation of while | i   | S         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

Loop invariant must capture the span of entry and exit condition range.

イロト イボト イヨト イヨト

Swaminathan J

19CSE205 : PROGRAM REASONING



Loop invariant must capture the progress made as iterations proceed.

#### 1. Capturing progress

| Evaluation of while | i   | S         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

# Loop invariant must capture the span of entry and exit condition range.

イロト イボト イヨト イヨト

Swaminathan J

19CSE205 : PROGRAM REASONING



Loop invariant must capture the progress made as iterations proceed.

#### 1. Capturing progress

| Evaluation of while | i   | s         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

- 2. Capturing the entry & exit range
  - Entry condition: i ranges from 1 to n
  - Exit condition: i takes the value n+1

Loop invariant must capture the span of entry and exit condition range.

イロト イボト イヨト イヨト



Loop invariant must capture the progress made as iterations proceed.

#### 1. Capturing progress

| Evaluation of while | i   | S         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

- 2. Capturing the entry & exit range
  - Entry condition: i ranges from 1 to n
  - Exit condition: i takes the value n+1

Combining, we get  $1 \le i \le n+1$ .

Loop invariant must capture the span of entry and exit condition range.

イロト イポト イヨト イヨト



```
/*@ requires n > 0;
     ensures \ ensures = n^{(n+1)/2};
*/
int sigma(int n) {
     int s = 0:
     int i = 1:
     /*@
      loop invariant s == (i-1)*i/2;
      loop invariant 1 \le i \le n+1:
    while (i \le n) {
        s = s + i;
        i = i + 1;
     return s;
```

Loop invariant must capture the progress made as iterations proceed.

#### 1. Capturing progress

| Evaluation of while | i   | s         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

- 2. Capturing the entry & exit range
  - Entry condition: i ranges from 1 to n
  - Exit condition: i takes the value n+1

Combining, we get  $1 \le i \le n+1$ .

Loop invariant must capture the span of entry and exit condition range.

イロト イポト イヨト イヨト



```
/*@ requires n > 0;
     ensures \ ensures = n^{(n+1)/2};
*/
int sigma(int n) {
     int s = 0:
     int i = 1:
     /*@
      loop invariant s == (i-1)*i/2;
      loop invariant 1 \le i \le n+1;
      loop assigns s, i;
     */
    while (i \le n) {
        s = s + i:
         i = i + 1:
     return s;
```

Loop invariant must capture the progress made as iterations proceed.

#### 1. Capturing progress

| Evaluation of while | i   | S         |
|---------------------|-----|-----------|
| entry condition     |     |           |
| Before iteration 1  | 1   | 0         |
| Before iteration 2  | 2   | 1         |
| Before iteration 3  | 3   | 3         |
| Before iteration 4  | 4   | 6         |
|                     |     |           |
|                     |     |           |
| Before iteration n  | n   | (n-1)*n/2 |
| After iteration n   | n+1 | n*(n+1)/2 |

Progress made is captured by (i-1)\*i/2.

- 2. Capturing the entry & exit range
  - Entry condition: i ranges from 1 to n
  - Exit condition: i takes the value n+1

Combining, we get  $1 \le i \le n+1$ .

Loop invariant must capture the span of entry and exit condition range.

イロト イポト イヨト イヨト



The loop invariant will help prove partial corrrectness of programs.

- Partial correctness: The correctness criteria will be met if the loop would terminate.
- Total correctness: The program is guaranteed to terminate and the correctness criteria will be met.



## The loop invariant will help prove partial corrrectness of programs.

- Partial correctness: The correctness criteria will be met if the loop would terminate.
- Total correctness: The program is guaranteed to terminate and the correctness criteria will be met.

#### Proving termination

- To prove termination, one has to specify a non-negative expression that will decrease as the while loop executes and eventually becomes 0.
- In our example, since i increases, the expression n - i decreases. In ACSL, this is specified using the annotation loop variant n - i.
- At most one loop variant clause is allowed.



## The loop invariant will help prove partial corrrectness of programs.

- Partial correctness: The correctness criteria will be met if the loop would terminate.
- Total correctness: The program is guaranteed to terminate and the correctness criteria will be met.

#### Proving termination

- To prove termination, one has to specify a non-negative expression that will decrease as the while loop executes and eventually becomes 0.
- In our example, since i increases, the expression n - i decreases. In ACSL, this is specified using the annotation loop variant n - i.
- At most one loop variant clause is allowed.

#### File: sigma-loop.c

```
/*@ requires n > 0;
    ensures \ = n^{(n+1)/2};
*/
int sigma(int n) {
    int s = 0;
    int i = 1:
    /*@
      loop invariant s == (i-1)*i/2;
      loop invariant 1 \le i \le n+1:
      loop assigns s, i;
      loop variant n - i;
    */
    while (i \le n) {
        s = s + i:
        i = i + 1:
    return s:
```

## Variations to try



Apply these variations to sigma program to improve your understanding.

- 1 Remove loop invariant s == (i-1)\*i/2;
- Remove loop invariant 1 <= i <= n+1;</p>
- Seplace (i-1)\*i/2 with i\*(i+1)/2 in first loop invariant.
- Replace loop invariant 1 <= i <= n+1; with loop invariant i <= n+1;</p>
- Seplace loop invariant 1 <= i <= n+1; with loop invariant 1 <= i <= n;</p>
- O as in bullet 4. In addition, replace while (i <= n) with while (i < n).</p>
- Remove the statement i = i + 1;
- Replace loop invariant 1 <= i <= n+1; with loop invariant 1 <= i <= n+2;. Now, modify your program such that criteria is met but program is wrong.</p>
- **(2)** Re-write the while loop to iterate in reverse way. i.e. n + (n-1) + ... + 1. What changes would you have to make to prove all goals?

#### Follow these instructions when you try the variations.

- Implement one variation at a time and reason out the frama-c output.
- Run frama-c-gui -wp (program) to see which goal cannot be proved.
- Don't make silly errors and waste time resolving them. Focus on checking logic.