Behavioral Verification

19CSE205: PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Contents

- Motivation
- 2 Code vs. Model Verification
- Broad goals in behavioral verification
- 4 Behavioral Verification
- **5** Examples of Finite State Models 1/3
- 6 Examples of Finite State Models 2/3
- Examples of Finite State Models 3/3

Motivation

- Functional verification has its limits
 - It is input-output based.
 - Termination is necessary to prove correctness.

... verify behavior

- Applications are large and complex
 - Event driven programming
 - Concurrent/distributed systems
 - Multi-tiered architectures
- Reasoning with code is hard
 - Implementation contains unnecessary details.
 - Program code is not precise and unambiguous like math.

... reason with models

Move towards model-based behavioral verification!

Verifying code vs. model

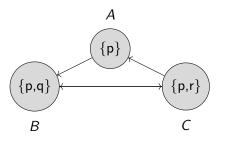
Verification	Code	Model
Functional	ACSL & Frama-c	Alt-ergo
	JML & ESC/Java	Why-3
Behavioral	BLAST	SPIN
	Java PathFinder	TLA+

Broad goals in behavioral verification

1. Safety: Nothing bad ever happens.

2. Liveness: Something good will happen eventually.

3. Fariness: All get to progress.


Examples	Safety	Liveness	Fairness
Traffic	Not two signals are	Not all signals are	No signal has to wait
light	green at same time	red at same time	indefinitely to turn green
Counter	Incr & decr is not		
	done at same time		
	Counter value does		
	not turn negative		
Readers	When a writer is		Writer does not get
Writers	active, no other		blocked out by
	process is active		continuous readers
Dining	No 2 adjacent phils	Not all phils are	No phil waits
Philosophers	eating at same time	hungry with one fork	indefinitely hungry
Sleeping	Only one customer	Barber not sleeping	Customer serviced in
Barber	serviced at a time	when customer waits	the order of arrival
Critical	No 2 processes enters	No 2 processes holds	No single process
Section	critical section at	partial resources &	enters critical section
	the same time	awaits the other	without exiting for long

Behavioral Verification

What does behavioral verification involve?

- A Model M of the system in the form of finite state machine.
- Behavior stated in the form of temporal property (p).
- A verification engine that verifies if M satisfies the property p. i.e.
 Does M ⊨ p? This process is called model checking.

Finite State Model

Property
Is p true in all states?
Is r true at any state?

Paths/Traces/Runs

Path 1: A B C A B C B C

Path 2: A B C B C B C A

Examples of Finite State Models 1/3

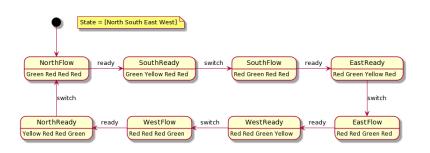


Figure: Finite State Model for Traffic Lights

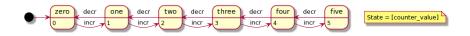


Figure: Finite State Model for Counter

Examples of Finite State Models 2/3

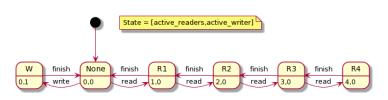


Figure: Finite State Model for Multiple Readers - Single Writer

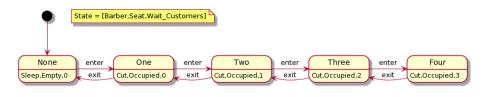
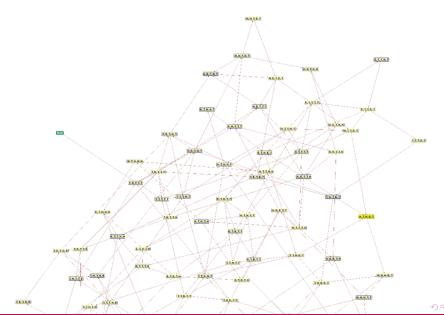



Figure: Finite State Model for Sleeping Barber

Examples of Finite State Models 3/3

