Temporal Logic

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J

19CSE205 : PROGRAM REASONING

Jul - Dec 2020 1 / 14

Temporal Property

- 2 Temporal Logic
- 3 Linear Temporal Logic
- 4 LTL Syntax
- 5 LTL Semantics
- 6 Combining properties

Temporal properties are expressed in temporal logic

- Just like propositional or predicate logic
- Propositional Logic
 - Sky is blue
 - Sun rises in the north
 - $\pi = 3.14$
- Predicate Logic
 - Some people are dishonest
 - All even numbers are composite
 - a + b = 10

Temporal Logic

- It is raining
- Stack is empty
- x = 5
- Philosopher 1 has one fork

Most systems are dynamic Truth value depends on time

Wikipedia definition

• Temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time.

Types of temporal logic

- Linear Temporal Logic (LTL)
- Computational Tree Logic (CTL)
- Interval Temporal Logic (ITL)
- Hennesey-Milner Logic (HML)
- CTL* Generalization of CTL and LTL

• ...

LINEAR-TIME TEMPORAL LOGIC

In LTL time is discretized

- Is a sequence of moments
- Has a beginning: t₀
- Runs infinitely into the future
- t₀, t₁, t₂,

A run of a finite state model

- Is a sequence of states
- Has a starting state S₀
- Does not terminate
- S₀, S₁, S₂,

Recall the finite state model

Different runs of this model

- TIME: t₀ t₁ t₂ t₃
- Run 1: A B C A B C A B C ...
- Run 2: A B C B C B C B C ...
- (Infinite runs are possible)

Each run is a sequence of states

Jul - Dec 2020 5 / 14

LTL Syntax

Boolean operators

- ¬ Negation
- \land Conjunction
- ∨ Disjunction
- ⊕ Exclusive Or
- $\bullet \rightarrow$ Implication
- \leftrightarrow Double Implication

Temporal operators

- X Next
- F Finally
- G Globally
- U Until
- W Weak Until
- R Release

An LTL formula evaluates to TRUE or FALSE.

Next we look at the semantics.

Jul - Dec 2020 6 / 14

The neXt operator verifies if a property p is true in the next state.

- Unary operator
- Syntax: X p
- Alternately O p (circle) is used

- Scenario: Dining Philosophers
- Start state: [T,T,T,T,T]
- p_1 : A philosopher is hungry. X p_1
- p₂: A philosopher is eating.

F: Finally operator

The Finally operator verifies if a property p is true eventually.

- Unary operator
- Syntax: F p
- Alternately \Diamond p (diamond) is used

Example:

- Scenario: Dining Philosophers
- Start state: [T,T,T,T,T]
- p₁: A philospher is eating.
 F p₁

p₂: Phil 1 and 2 are eating.

The Globally operator verifies if a property p is true always.

- Unary operator
- Syntax: G p
- Alternately \Box p (box) is used

Example:

- Scenario: Dining Philosophers
- Start state: [T,T,T,T,T]
- p₁: Phil 1 and 2 are not eating. G p₁

p₂: A philosopher is thinking.

The Until operator verifies if a property p is true until property q becomes true. Property q can be true in the current or future state.

- Binary operator
- Syntax: p U q

- Scenario: Dining Philosophers
- Start state: [T,T,T,T,T]
- p: Philosopher 1 is thinking. q: Philosopher 1 is hungry.
 p U q

W: Weak until operator

The Weak until operator verifies if a property p is true until property q becomes true. Property q need not become true at all in which case p remains true forever.

- Binary operator
- Syntax: p W q

- Scenario: Dining Philosophers
- Start state: [T,T,T,T,T]
- p: Philosopher 1 is thinking. q: Philosopher 1 is hungry.
 p W q Question: What if Philosopher 1 never gets hungry?

The Release operator verifies if a property q is true until p is true. At the point when p becomes true, q must also be true.

- Binary operator
- Syntax: p R q

- Scenario: Dining Philosophers
- Start state: [I,T,r]
- p: Phil 1 picks up the forks. q: Phil 1 is hungry.
 p R q

Finally Global and Globally Final

1. Finally Global: F G p

- Eventually p is true forever.
- Example: Eventually the fan runs at full speed.

2. Globally Final: G F p

- Property p is true again and again
- Example: A philosopher gets to eat (implies no starvation)

Conditional Validity

3. X (p \rightarrow F q)

- If p is true in the next state, q must be true eventually. If p is never true, q need not be true eventually.
- Example: If a philosopher feels hungry, he must eat eventually.

4. G (p \rightarrow F q)

- Whenever p is true, q will be true eventually.
- Example: Whenever a philosopher is hungry, he will eat eventually.

