
Levels of Program Correctness

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1 / 10

Contents

1 Classifying correctness

2 Examples of error types

3 Role of static analyzers

4 Lexical correctness

5 Syntax correctness

6 Semantic correctness

7 Logic correctness

8 Focus of this course

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2 / 10

Classifying correctness

Correctness is a relative term. It indicates absence of errors in programs.
Based on the types of errors in a program, correctness can be classifed into
following levels.

Lexical
correctness

Syntax
correctness

Semantic
correctness

Logic
correctness

1 Lexical correctness refers to well-formedness of individual words in a
program.

2 Syntax correctness refers to well-formedness of each statement in a
program.

3 Semantic correctness refers to meaningfulness between different part
of code or environment.

4 Logic correctness refers to correctness with respect to program’s
goal/objective.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 10

Examples of error types

(The examples are based on C programming language context)

Lexical errors
An ill-formed word/lexeme

The compiler catches them

Examples
23ab

$?

Syntax errors
An ill-formed statement

The compiler catches them

a + b = c;

if (a == b) else a = b;

Semantic errors
An action out of context

The compiler may catch them

Or result in runtime error

int x; x = ”hello”;

int * p; *p = 5;

FILE * f = fopen(”ab.c”,”w”);
Note: ab.c may not exist

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 10

Role of static analyzers

Static analysis refers to the process of analyzing source code to derive
variety of useful information. In this case, we are interested in
ascertaining the correctness.

The program is first turned into one or more data structure(s) and
analysis is carried out.

Data structures employed are some form or variants of

Stack
Tree
Graph
Dictionary

Static analyzers are usually automated. It takes the program source
as input and spits out the inferences.

A compiler is a good example of static analyzer.

We will look briefly at how compilers catch these errors.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 10

Lexical correctness

Lexical correctness is accomplished by a graph, known as finite state
automaton, which attempts to recognize each lexeme of the program,
one by one, based on its structure.

If recognized, the lexeme is classified.

If not, compiler flags an error.
area = breadth * height / 2;

1 2

43 5

a-z|
a-z| |0-9

0-9

0-9

.
0-9

0-9

Lexeme Token

area IDENTIFIER

= ASSIGN

breadth IDENTIFIER

* MULT

height IDENTIFIER

/ DIV

2 INT CONST

; SEMI

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 10

Syntax correctness

Syntax correctness is accomplished by representing the lexicalized
source code in the form of a tree, known as parse tree, and checking
if it adheres to syntax specifications of the language.

program ← statement*
statement ← declaration

| assignment
| . . .

declaration ← TYPE ID
(COMMA ID)*
SEMI

assignment ← ID ASSIGN
expr SEMI

expr ← ID (op expr)*
op ← PLUS

| MINUS
| MULT
| DIV

int x, y; y = x + 23.65;

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 10

Semantic correctness

Semantic correctness is accomplished by (i) a tree, known as Abstract
Syntax Tree (AST) and (ii) a look-up table, known as Symbol Table.
AST is a simplified version of parse tree.

Sample program

int x, y;

y = x * 2;

x is not
initialized.

So y cannot be

computed.

Assume default

value or flag

error/warning.

Abstract Syntax Tree

Symbol table
var type value
x int ?
y int ?

Compilers can ascertain only
partial semantic correctness.

Type mismatch

Undeclared variable

Uninitialized variable

Function call & definition
signature mistmatch

Other errors slip into runtime.

Division-by-zero

Memory faults

File exceptions

Use exception handling feature!

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 10

Logic correctness

Logic correctness implies program exhibits ”correct” functionality or
behavior.

Errors in program logic does not result in compile time or runtime
errors usually.

An example: Computing factorial

int factorial(int n) {
int fact = 1;
for (int i=2; i<=n; i++)

fact = fact + i;
return fact;

}

What is the flaw in
this logic?

There are million things that could go wrong in program logic!

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 10

Focus of this course

Are we interested in
lexical correctness? NO Compilers are good at this!

Are we interested in
syntax correctness? NO Compilers are good at this!

Are we interested in
semantic correctness? YES To a limited extent.

Are we interested in
logic correctness? YES Main focus of this course!

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 10

	Classifying correctness
	Examples of error types
	Role of static analyzers
	Lexical correctness
	Syntax correctness
	Semantic correctness
	Logic correctness
	Focus of this course

