
Towards Reasoning of Program Logic

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1 / 11

Contents

1 Logic correctness

2 Testing

3 Limits of testing 1/2

4 Limits of testing 2/2

5 Proofs

6 How does formal verification work?

7 Testing vs. Verification

8 Setting the expectation

9 Roadmap

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2 / 11

Logic correctness

Correctness of program logic implies realization of program’s goal.

We noted that ensuring lexical-syntax-semantic correctness are
necessary but not sufficient to achieve program’s objective.

Realization of program’s objective requires at least two things.
1 A way to specify the objective.

Simple yet powerful

2 A means to verify if the objective is met.

Minimize human intervention

For terminating programs, a way to do that is to specify the expected
output. But, output depends on input. Hence, specify input-output
relation. Broadly, there have been two approaches.

1 Testing

2 Proofs

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

1. Testing

in1 in2 in3 in4

↓ ↓ ↓ ↓
Program

↓ ↓ ↓ ↓
out1 out2 out3 out4

m m m m
exp1 exp2 exp3 exp4

X X X X

Inputs

Execute

Actual

output

Expected

output

Characteristics of testing

Enumerate input-expected output
pairs (test cases)

Check conformance by execution

Dynamic technique

Black-box based

Accurate

Incomplete

De-facto and widely adopted

Dijkstra’s famous quote: Testing can only prove the presence of errors but
hopelessly inadequate to prove their absence.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

Limits of testing 1/2

How do we know the test cases cover all paths?

Program
...
if (x > 0) {

1A
}
else {

1B
}
...
if (y > 0) {

2A
}
else {

2B
}
...

⇒

Potentially four
execution paths

1 ... 1A ... 2A ...

2 ... 1A ... 2B ...

3 ... 1B ... 2A ...

4 ... 1B ... 2B ...

Test cases should
cover all four paths

Corresponding to
branching choices

↔ (x > 0, y > 0)
↔ (x > 0, y ≤ 0)
↔ (x ≤ 0, y > 0)
↔ (x ≤ 0, y ≤ 0)

Note: Testing is
black box!

Let’s say we make the source code available.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

Limits of testing 2/2

Is it feasible to enumerate test cases to cover all paths?

Assuming two-way branching

Number of Potential number
branching of exectuion
conditions paths

1 2 (21)
2 4 (22)
3 8 (23)
.. ...
10 1024 (210)
20 1048576 (220)
30 1073741824 (230)

Path complexity is exponential!

A looping program

...
while (condition) {

L
}
...

Induces unbounded

number of paths

Paths
......
...L...
...LL...
...LLL...
...LLLL...
...LLLLL...
... so forth

Concurrency increases path complexity by multifold. We will examine later.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

2. Proofs

A foolproof way to prove logic correctness is by use of proofs.

Think induction, deduction, contrapositive from logic.

But we need tools to do proofs in automated way.

FORMAL VERIFICATION
(broadly two approaches)

1. Code based

Suited for proving
program is correct.

Easy to use!

2. Model based

Suited for proving
design is correct.

Catch errors early!

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

How does formal verification work?

Source code transformed into logical formulae and inference rules are
applied to check if the correctness criteria is met.

Source/Model

annotated with

specification

−→ Verification
system

−→
- YES, if able to prove.
- NO, if able to disprove.

- NO RESPONSE

Source Program source code preferably written modularly.

Model Blueprint/Design expressed in formal language such as
predicate logic or specialized modeling language.

Specification Embodies correctness criteria in the form of assertions,
pre- and post- conditions, loop invariants, etc.

Verification Breaks down the proof into smaller steps and applies
system rules of logic to deduce the validity automatically.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

Testing vs. Verification

Testing uses black-box approach. Verification takes a white-box.

Testing is a dynamic technique. Verification is usually static.

Testing tends to be incomplete since each execution covers only one
of the many paths. We saw the challenges in covering all paths. In
contrast, verification is complete since it uses source code which
contains the entire logic.

Testing is accurate since it is based on real execution. However,
verification tends to be approximate in some cases due to abstraction
and conservative in conclusion.

Verification demands exponential effort theoretically. With the rise of
computing power and advances in automated theorem proving, it has
now become practical to establish proofs by breaking down the
verification problem into smaller units. When proof cannot be
established in bounded steps, NO RESPONSE is the result.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

Setting the expectation

Formal verification tools are work in progress. Although, they have
come a long way, they are not adopted by industry fully.

Testing still rules majority of software development.

But formal verification can play a complementary role to testing.

Formal verification tools are common place when it comes to
development of critical software.

Formal verification has achieved great success in hardware domain.

This course will introduce you to two tools.

1 Frama-c: A code-based functional verification tool for C language.

2 SPIN: A model-based behavioral verification tool for models
developed using Promela.

Functional verification is concerned with input-output correctness.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11

Roadmap

Take an overview of weakest precondition calculus and understand
how deductive mechanism is used to prove correctness.

Introduce ANSI C Specification Language (ACSL) that define basic
constructs for correctness specification.

Learn to work with Frama-c, a practical functional verification tool,
that allows correctness criteria to be stated using ACSL and prove
correctness of C programs.

Understand issues in designing concurrent systems and get an
overview of model based verification using SPIN/Promela.

The main takeaway from this course for you is to develop deeper insights
into subtle issues in programming making you a thoughtful programmer.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 11 / 11

	Logic correctness
	Testing
	Limits of testing 1/2
	Limits of testing 2/2
	Proofs
	How does formal verification work?
	Testing vs. Verification
	Setting the expectation
	Roadmap

