
Weakest Precondition Calculus

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1 / 11



Contents

1 Can proof constructions be automated?

2 Edsger W. Dijkstra

3 Weakest Precondition Calculus

4 Skip

5 Assignment

6 Sequence

7 Conditional branching

8 Proving theorems on program correctness

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2 / 11



Can proof constructions be automated?

In the last lecture we saw the process of carrying out program proofs.

H

Source/Model

annotated with

specification

−→ Verification
system

−→
- YES, if able to prove.
- NO, if able to disprove.

- NO RESPONSE

So, how does the verfication system construct proofs? Is it possible to
automate the proof construction?

Dikjstra first provided a procedural approach to realize this objective
in the form of Weakest Precondition calculus (topic of this lecture).

This was followed by several improvisation and new techniques such as
model checking, design by contract, satisfiability modulo theories, etc.

The verification process demands lot of computing power. With the
advancements in hardware speed, several tools are now available to
construct proofs in an automated way.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11



Can proof constructions be automated?

In the last lecture we saw the process of carrying out program proofs.

H

Source/Model

annotated with

specification

−→ Verification
system

−→
- YES, if able to prove.
- NO, if able to disprove.

- NO RESPONSE

So, how does the verfication system construct proofs? Is it possible to
automate the proof construction?

Dikjstra first provided a procedural approach to realize this objective
in the form of Weakest Precondition calculus (topic of this lecture).

This was followed by several improvisation and new techniques such as
model checking, design by contract, satisfiability modulo theories, etc.

The verification process demands lot of computing power. With the
advancements in hardware speed, several tools are now available to
construct proofs in an automated way.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11



Edsger W. Dijkstra

Dijkstra has made phenomenal contributions to computer science. He
was one of the reasons for computer science to become a separate
discipline. He received the ACM Turing Award in the year 1972.

A subset of his works you will study in B.Tech

Formal specification and verification

Weakest precondition calculus

Concurrency control

Banker’s algorithm to prevent deadlock
Semaphore: A synchronization mechanism
Dining Philosophers Problem

Algorithms

Single source shortest path algorithm

Must read: https://en.wikipedia.org/wiki/Edsger_W._Dijkstra.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Weakest precondition calculus

Weakest precondition calculus is a deductive system, proposed by
Dijkstra, that provides an algorithmic solution to perform symbolic
execution on program statements in the backward direction in order
to deduce the predicate that will guarantee a given postcondition.

We call the deduced predicate as the weakest precondition. The weakest
precondition P for a statement S and a postcondition Q is written as

P = wp(S,Q).

Predicate An expression that evaluates to either true or false.

Postcondition A predicate that evaluates to true after execution a statement/block.

Precondition A predicate which when true before execution of a statement/block
ensures postcondion is true after execution of that statement/block.

Symbolic An analysis technique that uses symbolic values to variables in an
execution attempt to identify different execution paths that a program takes.

Deductive A system that uses axioms and rules of inference to prove theorems.
system

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11



Weakest precondition calculus

Weakest precondition calculus is a deductive system, proposed by
Dijkstra, that provides an algorithmic solution to perform symbolic
execution on program statements in the backward direction in order
to deduce the predicate that will guarantee a given postcondition.

We call the deduced predicate as the weakest precondition. The weakest
precondition P for a statement S and a postcondition Q is written as

P = wp(S,Q).

Predicate An expression that evaluates to either true or false.

Postcondition A predicate that evaluates to true after execution a statement/block.

Precondition A predicate which when true before execution of a statement/block
ensures postcondion is true after execution of that statement/block.

Symbolic An analysis technique that uses symbolic values to variables in an
execution attempt to identify different execution paths that a program takes.

Deductive A system that uses axioms and rules of inference to prove theorems.
system

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11



Weakest precondition calculus

Weakest precondition calculus is a deductive system, proposed by
Dijkstra, that provides an algorithmic solution to perform symbolic
execution on program statements in the backward direction in order
to deduce the predicate that will guarantee a given postcondition.

We call the deduced predicate as the weakest precondition. The weakest
precondition P for a statement S and a postcondition Q is written as

P = wp(S,Q).

Predicate An expression that evaluates to either true or false.

Postcondition A predicate that evaluates to true after execution a statement/block.

Precondition A predicate which when true before execution of a statement/block
ensures postcondion is true after execution of that statement/block.

Symbolic An analysis technique that uses symbolic values to variables in an
execution attempt to identify different execution paths that a program takes.

Deductive A system that uses axioms and rules of inference to prove theorems.
system

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11



1. Skip

A skip statement refers to a blank statement.

A skip statement does not change the program state.

More specifically, it doesn’t affect the postcondition.

Consider the example below

P

S

Q

x > 0

skip

x > 0

wp(skip,Q) = Q

wp(skip,x>0) = x>0

Each statement can be viewed as a predicate transformer that turns a
precondition to a postcondition. wp(S,Q) does the reverse transformation.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11



1. Skip

A skip statement refers to a blank statement.

A skip statement does not change the program state.

More specifically, it doesn’t affect the postcondition.

Consider the example below

P

S

Q

x > 0

skip

x > 0

wp(skip,Q) = Q

wp(skip,x>0) = x>0

Each statement can be viewed as a predicate transformer that turns a
precondition to a postcondition. wp(S,Q) does the reverse transformation.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11



1. Skip

A skip statement refers to a blank statement.

A skip statement does not change the program state.

More specifically, it doesn’t affect the postcondition.

Consider the example below

P

S

Q

x > 0

skip

x > 0

wp(skip,Q) = Q

wp(skip,x>0) = x>0

Each statement can be viewed as a predicate transformer that turns a
precondition to a postcondition. wp(S,Q) does the reverse transformation.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11



2. Assignment

A assignment statement is of the form value = expression.

An assignment statement changes the program state.

It results in the variable on the left hand side to change.

Consider the example below

P

S

Q

y > 2

x = y + 5

x > 7

wp(x=E,Q) = Q[x←E] = P

wp(x=y+5,x>7) = y+5>7 = y>2

A postcondition can have many preconditions. For the above example y>2,
y>34, y>100 will all ensure the postcondition x>7. Among them y> 2 is
the least constraining condition and hence it is the weakest precondition.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11



2. Assignment

A assignment statement is of the form value = expression.

An assignment statement changes the program state.

It results in the variable on the left hand side to change.

Consider the example below

P

S

Q

y > 2

x = y + 5

x > 7

wp(x=E,Q) = Q[x←E] = P

wp(x=y+5,x>7) = y+5>7 = y>2

A postcondition can have many preconditions. For the above example y>2,
y>34, y>100 will all ensure the postcondition x>7. Among them y> 2 is
the least constraining condition and hence it is the weakest precondition.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11



2. Assignment

A assignment statement is of the form value = expression.

An assignment statement changes the program state.

It results in the variable on the left hand side to change.

Consider the example below

P

S

Q

y > 2

x = y + 5

x > 7

wp(x=E,Q) = Q[x←E] = P

wp(x=y+5,x>7) = y+5>7 = y>2

A postcondition can have many preconditions. For the above example y>2,
y>34, y>100 will all ensure the postcondition x>7. Among them y> 2 is
the least constraining condition and hence it is the weakest precondition.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11



3. Sequence

A sequence denotes a block of statements.

A sequence usually results in change of state more than once.

P

S1

Q

S2

R

z > 1

y = z * 2

y > 2

x = y + 5

x > 7

wp(S1;S2,R) = wp(S1,wp(S2,R))
= wp(y=E1,Q)
= Q[y←E1] = P

wp(S2,R) = wp(x=E2,R)
= R[x←E2] = Q

wp(y=z*2;x=y+5,x>7) = wp(y=z*2,wp(x=y+5,x>7)) = wp(y=z*2,y+5>7)

= wp(y=z*2,y>2) = z*2>2 = z>1

Generalization: wp(S1; ..;Sn,Q) = wp(S1; ..;Sn−1,Pn−1) . . . = wp(S1,P1) = P

where Pn = R, Pi−1 = wp(Si ,Pi ) and P0 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11



3. Sequence

A sequence denotes a block of statements.

A sequence usually results in change of state more than once.

P

S1

Q

S2

R

z > 1

y = z * 2

y > 2

x = y + 5

x > 7

wp(S1;S2,R) = wp(S1,wp(S2,R))
= wp(y=E1,Q)
= Q[y←E1] = P

wp(S2,R) = wp(x=E2,R)
= R[x←E2] = Q

wp(y=z*2;x=y+5,x>7) = wp(y=z*2,wp(x=y+5,x>7)) = wp(y=z*2,y+5>7)

= wp(y=z*2,y>2) = z*2>2 = z>1

Generalization: wp(S1; ..;Sn,Q) = wp(S1; ..;Sn−1,Pn−1) . . . = wp(S1,P1) = P

where Pn = R, Pi−1 = wp(Si ,Pi ) and P0 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11



3. Sequence

A sequence denotes a block of statements.

A sequence usually results in change of state more than once.

P

S1

Q

S2

R

z > 1

y = z * 2

y > 2

x = y + 5

x > 7

wp(S1;S2,R) = wp(S1,wp(S2,R))
= wp(y=E1,Q)
= Q[y←E1] = P

wp(S2,R) = wp(x=E2,R)
= R[x←E2] = Q

wp(y=z*2;x=y+5,x>7) = wp(y=z*2,wp(x=y+5,x>7)) = wp(y=z*2,y+5>7)

= wp(y=z*2,y>2) = z*2>2 = z>1

Generalization: wp(S1; ..;Sn,Q) = wp(S1; ..;Sn−1,Pn−1) . . . = wp(S1,P1) = P

where Pn = R, Pi−1 = wp(Si ,Pi ) and P0 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11



3. Sequence

A sequence denotes a block of statements.

A sequence usually results in change of state more than once.

P

S1

Q

S2

R

z > 1

y = z * 2

y > 2

x = y + 5

x > 7

wp(S1;S2,R) = wp(S1,wp(S2,R))
= wp(y=E1,Q)
= Q[y←E1] = P

wp(S2,R) = wp(x=E2,R)
= R[x←E2] = Q

wp(y=z*2;x=y+5,x>7) = wp(y=z*2,wp(x=y+5,x>7)) = wp(y=z*2,y+5>7)

= wp(y=z*2,y>2) = z*2>2 = z>1

Generalization: wp(S1; ..;Sn,Q) = wp(S1; ..;Sn−1,Pn−1) . . . = wp(S1,P1) = P

where Pn = R, Pi−1 = wp(Si ,Pi ) and P0 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



A prelude to conditional branching

A conditional is a control point that results in alternate execution
paths. This has some subtle issues. We will do it in two steps.

Example: If it rains then I will play chess else I will shop.

1 It rains ⇒ I will play chess

AND / OR?

AND

It doesn’t rain ⇒ I will shop

2 It rains ∧ I play chess

AND / OR?

OR

Its doesn’t rain ∧ I shop

Generalizing, if B then S1 else S2

1 B ⇒ S1 ∧ ¬B ⇒ S2

2 B ∧ S1 ∨ ¬B ∧ S2

wp (if B then S1 else S2,Q)

= B ⇒ wp(S1,Q) ∧ ¬B ⇒ wp(S2,Q)

= B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

B does not change state. Hence,
wp(B,Q) is not required.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P
Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P
Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



4. Conditional branching

We will use: wp(if B then S1 else S2) = B ∧ wp(S1,Q) ∨ ¬B ∧ wp(S2,Q)

P

S1

S2

Q

y > 1

if y < 0 then
x = y + 1

else
x = y − 1

x > 0

What if we had
if..then without
the else part?

As good as −→

if y < 0 then

x = y + 1

else

x = x

wp(if y<0 then x=y+1 else x=y−1,x>0)

= y<0 ∧ wp(x=y+1,x>0) ∨ ¬(y<0) ∧ wp(x=y−1,x>0)

= y<0 ∧ y+1>0 ∨ y≥0 ∧ y−1>0

= y<0 ∧ y> −1 ∨ y≥0 ∧ y>1

= FALSE ∨ y>1

= y>1 = P
Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11



Proving theorems on program correctness

To conclude, by combining skip, assignment, sequence and conditional
branching statements we can construct a wide variety of programs.

We can hence deduce weakest precondition P for a program given Q.

Steps to prove program correctness

Let S be the program.
Let P’ be the input condition.
Let Q’ be the output condition.

Theorem: Does P’ ⇒ Q’?

Proof: Let postcondition Q = Q’

1 Obtain P = wp(S,Q). i.e. P ⇒ Q
2 Check P’ ⇒ P

Therefore P’ ⇒ P ⇒ Q = Q’

Recall previous example:

Let S: z = y * 2; x = y + 5;
Let Q’: x > 7

1. Given P’: z < 0
We obtained P: z > 1
Does z < 0 ⇒ z > 1? No

2. Given P’: z > 5
We obtained P: z > 1
Does z > 5 ⇒ z > 1? Yes

Note: We will cover loops later as it involves some intricacies.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 11 / 11


	Can proof constructions be automated?
	Edsger W. Dijkstra
	Weakest Precondition Calculus
	Skip
	Assignment
	Sequence
	Conditional branching
	Proving theorems on program correctness

