ANSI/ISO C Specification Language (ACSL)

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

SAMRITA

=" VISHWA VIDYAPEETHAM

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1/11

AMRITA

/IDYAPEETHAM

© What is ACSL?

© ensures
© requires
Q@ assigns
O \old
Q \valid

@ behavior and assumes

© complete and disjoint behaviors

© assert

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2/11

APEETHAM

ACSL is a specification language for C programs developed by
Commissariat a I'Energie Atomique and INRIA, France.

@ Follows design by contract paradigm. Pre- and postconditions are
stated for functions, commonly referred to as function contracts.

e Contracts are enclosed within special type of comments /*@ ... */ or
//@ ... just above the function definition/declaration.

@ Includes many more predicates to cater to the needs of the language
and expressivity of the specification.

Source/Model Verification - YES, if able to prove.
annotated with ~ — — - NO, if able to disprove.
» specification System - NO RESPONSE

Only a few basic ACSL constructs to get started are discussed here.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3/11

1. The ensures predicate

APEETHAM

The ensures predicate is used to specify the postcondition.

//@ ensures \result > a;

int increment(int a) {
return a + 1;

}

\result is a generic way to
refer to the return value
of a function.

@ The ensures keyword is followed by a logical condition that be to
true/false followed by semi-colon.

@ There can be more than one ensures instance for a function specified
in multiple lines.

@ Equivalently you can also concatenate them within a single ensures
predicate instance by using logical operators &&;, ||, | operators.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4/11

2. The requires predicate TA

The requires predicate is used to specify the precondition.

/*@ requires a > 0;
ensures \result > 1;
*/
int increment(int a) {
return a + 1;
}

v

@ requires and ensures together form the building block for specifying
function contracts. There are more.

o If there is no requires predicate specified, it implies requires true;. i.e.
precondition remains satisfied always.

@ There can be one or more instances requires predicate for a function.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5/11

3. The assigns clause SAMRITA

The assigns clause is used to specify which global variable(s) can be
modified by the function. It is part of function contract.

Example 1: Incorrect use Example 2: Correct use

int g; // global int g, h=0;

//@ assigns \nothing; //@ assigns g;

void setg() { void modifyg() {
g=1 g=h+1;

} }

@ In the absence of assigns clause in a function contract, the function is
free to modify any visible global variable.

@ assigns \nothing disallows modification of any global variable. This
clause can be used as a means to avoid/minimize side-effects.

@ assigns g allows only the variable g to be modified. Other global
variables cannot be modified.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6/11

4. The built-in function \old SAMRITA

The built-in function \old is used to access the previous state of a
variable.

int a; // global variable

//@ ensures a == \old(a) + 1;
void increment() {
a++;

}

@ The \old function evaluates its argument in the pre-state. i.e. as per
the state before the function begins.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7/11

5. The built-in function \valid

APEETHAM

The built-in function \valid is used to specify that the given argument
points to a valid address. i.e. it can be de-referenced.

/*@ requires \valid(ptr);
ensures \result == *ptr + 1;
*
/
int increment(int * ptr) {
return *ptr + 1;

}

@ Though the increment logic is correct, if ptr happens to be a null
pointer, it will only result in memory (segmentation) fault.

@ \valid here states that increment contractually agrees to work
correctly provided the argument ptr points to a valid memory location.

@ It is required while working with arrays also since array boundaries
cannot be exceeded. We will see the arrays later.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8/11

6. behavior and assumes

APEETHAM

A function can exhibit more than one behavior. Verification must
hence be different depending on the particular behavior.

@ behavior is used to specify each behavior.

@ assumes serves as the trigger for checking each.

/*@ behavior positive_a:
assumes a > 0;
ensures \result > a+1;

*/

int increment(int a) {

if (a > 0)
return a+1;
else
return a;

The behavior positive_a states
that only if a is positive, the
return value must be checked for
the specified condition.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9/11

7. complete and disjoint behaviors

WA VIDYAPEETHAM

The previous example states only a partial behavior.

@ Multiple behaviors can be stated to cover all possibilities so as to make the
specification complete.

@ The behaviors can be stated as disjoint so that one possibility does not
result in triggering of two behaviors.

/*@ behavior positive_a:
assumes a > 0;
ensures \result > a+1;

behavior negative_a:
assumes a <= 0;
ensures \result > a+2;

The behaviors positive_a and
negative_a are stated to be
complete and disjoint. So

complete behaviors positive_a, negative_a; fappr_oprlate behavior check
disioi . . . i is triggered based on the
isjoint behaviors positive_a, negative_a; .
*/ assumes predicate.
int increment(int a) {
return a>0 ? a+1: a+2;

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10/11

8. The assert predicate SAMRITA

The assert predicate can be used to check for the truth of a condition
at any point in the program.

//@ assert x >= 0;
x=x+ 1;
//@ assert x > 0;

@ The assert can be thought of as a statement level contract.

@ It can be specified anywhere in the code.

Verfication constructs relating to loops and arrays will be covered later.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 11/11

	What is ACSL?
	ensures
	requires
	assigns
	\old
	\valid
	behavior and assumes
	complete and disjoint behaviors
	assert

