
ANSI/ISO C Specification Language (ACSL)

19CSE205 : PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 1 / 11

Contents

1 What is ACSL?

2 ensures

3 requires

4 assigns

5 \old

6 \valid

7 behavior and assumes

8 complete and disjoint behaviors

9 assert

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 2 / 11

What is ACSL?

ACSL is a specification language for C programs developed by
Commissariat à l’Énergie Atomique and INRIA, France.

Follows design by contract paradigm. Pre- and postconditions are
stated for functions, commonly referred to as function contracts.

Contracts are enclosed within special type of comments /*@ ... */ or
//@ ... just above the function definition/declaration.

Includes many more predicates to cater to the needs of the language
and expressivity of the specification.

I

Source/Model

annotated with

specification

−→ Verification
system

−→
- YES, if able to prove.
- NO, if able to disprove.

- NO RESPONSE

Only a few basic ACSL constructs to get started are discussed here.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 3 / 11

1. The ensures predicate

The ensures predicate is used to specify the postcondition.

//@ ensures \result > a;
int increment(int a) {

return a + 1;
}

\result is a generic way to
refer to the return value
of a function.

The ensures keyword is followed by a logical condition that be to
true/false followed by semi-colon.

There can be more than one ensures instance for a function specified
in multiple lines.

Equivalently you can also concatenate them within a single ensures
predicate instance by using logical operators &&, ||, ! operators.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 4 / 11

2. The requires predicate

The requires predicate is used to specify the precondition.

/*@ requires a > 0;
ensures \result > 1;

*/
int increment(int a) {

return a + 1;
}

requires and ensures together form the building block for specifying
function contracts. There are more.

If there is no requires predicate specified, it implies requires true;. i.e.
precondition remains satisfied always.

There can be one or more instances requires predicate for a function.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 5 / 11

3. The assigns clause

The assigns clause is used to specify which global variable(s) can be
modified by the function. It is part of function contract.

Example 1: Incorrect use

int g; // global
//@ assigns \nothing;
void setg() {

g = 1;
}

Example 2: Correct use

int g, h = 0;
//@ assigns g;
void modifyg() {

g = h + 1;
}

In the absence of assigns clause in a function contract, the function is
free to modify any visible global variable.

assigns \nothing disallows modification of any global variable. This
clause can be used as a means to avoid/minimize side-effects.

assigns g allows only the variable g to be modified. Other global
variables cannot be modified.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 6 / 11

4. The built-in function \old

The built-in function \old is used to access the previous state of a
variable.

int a; // global variable

//@ ensures a == \old(a) + 1;
void increment() {

a++;
}

The \old function evaluates its argument in the pre-state. i.e. as per
the state before the function begins.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 7 / 11

5. The built-in function \valid

The built-in function \valid is used to specify that the given argument
points to a valid address. i.e. it can be de-referenced.

/*@ requires \valid(ptr);
ensures \result == *ptr + 1;

*/
int increment(int * ptr) {

return *ptr + 1;
}

Though the increment logic is correct, if ptr happens to be a null
pointer, it will only result in memory (segmentation) fault.

\valid here states that increment contractually agrees to work
correctly provided the argument ptr points to a valid memory location.

It is required while working with arrays also since array boundaries
cannot be exceeded. We will see the arrays later.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 8 / 11

6. behavior and assumes

A function can exhibit more than one behavior. Verification must
hence be different depending on the particular behavior.

behavior is used to specify each behavior.

assumes serves as the trigger for checking each.

/*@ behavior positive a:
assumes a > 0;
ensures \result > a+1;

*/
int increment(int a) {

if (a > 0)
return a+1;

else
return a;

}

The behavior positive a states
that only if a is positive, the
return value must be checked for
the specified condition.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 9 / 11

7. complete and disjoint behaviors

The previous example states only a partial behavior.

Multiple behaviors can be stated to cover all possibilities so as to make the
specification complete.

The behaviors can be stated as disjoint so that one possibility does not
result in triggering of two behaviors.

/*@ behavior positive a:
assumes a > 0;
ensures \result > a+1;

behavior negative a:
assumes a <= 0;
ensures \result > a+2;

complete behaviors positive a, negative a;
disjoint behaviors positive a, negative a;

*/
int increment(int a) {

return a>0 ? a+1 : a+2;
}

The behaviors positive a and
negative a are stated to be
complete and disjoint. So
appropriate behavior check
is triggered based on the
assumes predicate.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 10 / 11

8. The assert predicate

The assert predicate can be used to check for the truth of a condition
at any point in the program.

. . .
//@ assert x >= 0;
x = x + 1;
//@ assert x > 0;
. . .

The assert can be thought of as a statement level contract.

It can be specified anywhere in the code.

Verfication constructs relating to loops and arrays will be covered later.

Swaminathan J 19CSE205 : PROGRAM REASONING Jul - Dec 2020 11 / 11

	What is ACSL?
	ensures
	requires
	assigns
	\old
	\valid
	behavior and assumes
	complete and disjoint behaviors
	assert

